Spherical symmetry patterns
Contents
- 1The Four Fundamental Features
- 2Conway Cost\($\large\color{blue}{\bf{\circ}}: 2\)
- 314 spherical symmetry possibilities:
- 3.1\(\color{red}{*532}\)
- 3.2\(\color{red}{*432}\)
- 3.3\(\color{red}{*332}\)
- 3.4\(\color{red}{*22N}\)
- 3.5\(\color{red}{*NN}\)
- 3.6\(\color{blue}{3}\color{red}{*2}\)
- 3.7\(\color{blue}{2}\color{red}{*N}\)
- 3.8\(\color{blue}{N}\color{red}{*}\)
- 3.9\(\color{blue}{N}\color{red}{\times}\)
- 3.10\(\color{blue}{532}\)
- 3.11\(\color{blue}{432}\)
- 3.12\(\color{blue}{332}\)
- 3.13\(\color{blue}{22N}\)
- 3.14\(\color{blue}{NN}\)
(This is a work in progess…)
The Four Fundamental Features
- wonders: repeated without reflection. not explained by gyrations, mirrors or miracles
- gyrations: rotational symmetry
- kaleidoscopes: mirror lines
- miracles: mirrorless crossing
Conway Cost\($\large\color{blue}{\bf{\circ}}: 2\)
\(\large\color{blue}{\bf{N}}: \frac{N-1}{N}\)
\(\large\color{blue}{\bf{\infty}}: 1\)
\(\large\color{red}{\bf{\ast}}: 1\)
\(\large\color{red}{\bf{\times}}: 1\)
\(\large\color{red}{\bf{N}}: \frac{N-1}{2N}\)
\(\large\color{red}{\bf{\infty}}: \frac{1}{2}\)
Total cost of a spherical symmetry pattern is less than \(2\)
14 spherical symmetry possibilities:
\(\large \begin{array}{cccccc}\color{red}{*532}&\color{red}{*432}&\color{red}{*332}&\color{red}{*22N}&\color{red}{*NN}\\&&&&\color{blue}{N}\color{red}{*}\\&&\color{blue}{3}\color{red}{*2}&\color{blue}{2}\color{red}{*N}&\\&&&&\color{blue}{N}\color{red}{\times}\\\color{blue}{532}&\color{blue}{432}&\color{blue}{332}&\color{blue}{22N}&\color{blue}{NN}\end{array}\)
\(\color{red}{*532}\)

\(\color{red}{*432}\)

\(\color{red}{*332}\)

\(\color{red}{*22N}\)

\(\color{red}{*NN}\)

\(\color{blue}{3}\color{red}{*2}\)

\(\color{blue}{2}\color{red}{*N}\)

\(\color{blue}{N}\color{red}{*}\)

\(\color{blue}{N}\color{red}{\times}\)

\(\color{blue}{532}\)

\(\color{blue}{432}\)

\(\color{blue}{332}\)

\(\color{blue}{22N}\)

\(\color{blue}{NN}\)
